Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.134
Filtrar
1.
Sci Rep ; 14(1): 9364, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654065

RESUMO

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Assuntos
Domínio Catalítico , Cistationina gama-Liase , Sulfeto de Hidrogênio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/química , Cristalografia por Raios X , Especificidade por Substrato , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálise
2.
Anal Chim Acta ; 1299: 342434, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499420

RESUMO

BACKGROUND: Cancer as a leading cause of premature death worldwide has become a major threat to human health due to the high incidence and mortality. Monitoring tumor markers are reliable and significantly important for early detection of cancers. In complex biological systems, it is of great urgency but still remains challenging to conceive a fluorescent probe with multiple tumor markers detection property. Hydrogen sulfide (H2S) and pH are two target biomarkers for diagnosis of early cancer. The preparation of a novel probe with H2S and pH dual detection functions is highly anticipated. RESULTS: Herein, a novel sequential detection probe HTPQ-HS for H2S and pH has been developed. In this system, HPQ (2-(2 -hydroxyphenyl)-4(3H)-quinazolinone) structure combined with triphenylamine is applied as the fluorophore, and 2, 4-dinitrophenylsulfonyl group is used as the recognition group. In the presence of H2S, HTPQ-HS is transformed into product HTPQ-OH which shows fluorescence enhancement (29-fold) at 525 nm in less than 4 min and further displays repeatable acid-base responsive ability. HTPQ-HS is able to sequentially response to H2S and pH in living cells and does not react directly with pH. Owing to the low cytotoxicity, HTPQ-HS is able to detect exogenous and endogenous H2S in colon cancer cells and mice, monitor H2S in inflammation model and in foodstuffs. As the environment changes from acidic to alkaline, the fluorescence intensity ratio (I470/I530) of product HTPQ-OH changes remarkably, illustrating the ratiometric fluorescent responsiveness to pH. SIGNIFICANCE AND NOVELTY: A multifunctional fluorescent probe HTPQ-HS for sequential detection of H2S and pH is synthesized. Probe HTPQ-OH realizes the monitoring of dynamic changes in intracellular pH and displays prospective application in security printing. We expect that our work could offer an important guidance on the development of multifunctional fluorescent probes for visualizing H2S and pH in biology and environment.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Células HeLa , Concentração de Íons de Hidrogênio , Biomarcadores Tumorais
3.
Chem Rev ; 124(7): 4124-4257, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38512066

RESUMO

Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Corantes Fluorescentes/química , Diagnóstico por Imagem , Enxofre , Dissulfetos
4.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226660

RESUMO

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Simulação de Acoplamento Molecular , Células HeLa , Microscopia de Fluorescência
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123674, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042125

RESUMO

Hydrogen sulfide (H2S) is a gas with a toxic odor that plays an irreplaceable role in physiological activities within the mammalian body. Therefore, it is important to do the distribution and quantitative detection of H2S in mammalian cells. In this paper, a fluorescence probe (EDPH) based on purine scaffold was designed and synthesized with high sensitivity and good selectivity. H2S induced ether bond breakage in EDPH, resulting in a significant redshift of the absorption band (from 370 nm to 500 nm) with a Stokes shift of 130 nm. After the addition of H2S, the fluorescence intensity of EDPH showed a good linear correlation with the concentration of H2S, which enabled the quantitative detection of H2S with a low limit of detection (41 nM). Finally, the EDPH was applied to the cellular Hele, and the probe has good cellularity imaging capability for the detection of H2S in living systems.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Corantes Fluorescentes/química , Células HeLa , Sulfeto de Hidrogênio/química , Mamíferos , Imagem Óptica , Purinas
6.
J Environ Manage ; 351: 119784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081091

RESUMO

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Instalações de Eliminação de Resíduos , Sulfatos/química
7.
J Nanobiotechnology ; 21(1): 483, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104180

RESUMO

Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical  illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.


Assuntos
Sulfeto de Hidrogênio , Infecções por Salmonella , Animais , Camundongos , Salmonella typhimurium , Sulfeto de Hidrogênio/química , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Antibacterianos/farmacologia
8.
J Am Chem Soc ; 145(46): 25486-25494, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37950698

RESUMO

Hydrogen sulfide (H2S), an endogenous signaling molecule, is known to play a pivotal role in neuroprotection, vasodilation, and hormonal regulation. To further explore the biological effects of H2S, refined donors that facilitate its biological delivery, especially under specific (patho) physiological conditions, are needed. In the present study, we demonstrate that ortho-substituted, aryl boronate esters provide two unique and distinct pathways for H2S release from thioamide-based donors: Lewis acid-facilitated hydrolysis and reactive oxygen species (ROS)-induced oxidation/cyclization. Through a detailed structure-activity relationship study, donors that resist hydrolysis and release H2S solely via the latter mechanism were identified, which have the added benefit of providing a potentially useful heterocycle as the lone byproduct of this novel chemistry. To highlight this, we developed an ROS-activated donor (QH642) that simultaneously synthesizes a benzoxazole-based fluorophore en route to its H2S delivery. A distinct advantage of this design over earlier self-reporting donors is that fluorophore formation is possible only if H2S has been discharged from the donor. This key feature eliminates the potential for false positives and provides a more accurate depiction of reaction progress and donor delivery of H2S, including in complex cellular environments.


Assuntos
Sulfeto de Hidrogênio , Humanos , Espécies Reativas de Oxigênio , Autorrelato , Sulfeto de Hidrogênio/química , Transdução de Sinais , Relação Estrutura-Atividade
9.
ACS Macro Lett ; 12(11): 1583-1588, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937586

RESUMO

Hydrogen sulfide (H2S) is an important gaseous signaling molecule with unique pleiotropic pharmacological effects, but may be limited for clinical translation due to the lack of a reliable delivery form that delivers exogenous H2S to cells at action site with precisely controlled dosage. Herein, we report the design of a poly(thiourethane) (PTU) self-immolative polymer terminally caged with an acrylate moiety to trigger release of H2S in response to cysteine (Cys) and homocysteine (Hcy), the most used and independent indicators of neurodegenerative diseases. The synthesized PTU polymer was then coated with the red-blood-cell (RBC) membrane in the presence of solubilizing agent to self-assemble into nanoparticles with enhanced stability and cytocompatibility. The Hcy/Cys mediated addition/cyclization chemistry actuated the biomimetic polymeric nanoparticles to disintegrate into carbonyl sulfide (COS), and finally convert into H2S via the ubiquitous carbonic anhydrase (CA). H2S released in a controlled manner exhibited a strong antioxidant ability to resist Alzheimer's disease (AD)-related oxidative stress factors in BV-2 cells, a neurodegenerative disease model in vitro. Thus, this work may provide an effective strategy to construct H2S donors that can degrade in response to a specific pathological microenvironment for the treatment of neurodegenerative diseases.


Assuntos
Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Humanos , Cisteína , Sulfeto de Hidrogênio/química , Membrana Eritrocítica/metabolismo , Polímeros
10.
Chemistry ; 29(66): e202302197, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37665099

RESUMO

Stimuli-responsive fluorogenic prodrugs are advantageous for the targeted drug delivery enabling real-time non-invasive monitoring with turn-on fluorescence. We report herein the dual-stimuli (ROS and CA)-responsive thiocarbamate-based prodrug (AM-TCB) for the turn-on fluorogenic delivery of the naphthalimide-based anticancer agent amonafide along with the gasotransmitter hydrogen sulfide (H2 S). A carbamate-based prodrug AM-CB was also designed, capable of releasing the anticancer agent amonafide without any H2 S. The prodrugs were synthesized using multi-step organic synthesis. UV-Vis and fluorescence spectroscopic studies revealed selective reactivity of the boronate ester group of prodrugs towards ROS (primarily H2 O2 ) with the release of amonafide and COS/CO2 via self-immolative processes. Hydrolysis of the generated COS by carbonic anhydrase (CA) produces H2 S. While the prodrug AM-TCB retained the anticancer activity of free amonafide in cancer cells (MDA-MB-231 and HeLa), unlike amonafide, it enhanced the cellular viability of the non-malignant cells (HEK-293). Fluorescence imaging in HeLa cells revealed the simultaneous delivery of the anticancer agent and H2 S from AM-TCB with turn-on fluorescence. Western blot studies further revealed the cytoprotective effects of the released H2 S from AM-TCB. The present adjuvant strategy therefore would be helpful in future for ameliorating the anticancer drug-induced side-effects.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sulfeto de Hidrogênio/química , Células HeLa , Fluorescência , Espécies Reativas de Oxigênio , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/química
11.
Redox Biol ; 67: 102899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748320

RESUMO

In an attempt to understand the cellular mechanisms of H2S signalling, recent research has focused on supersulfide (i.e., alkyl and inorganic hydropersulfide) formation and subsequent reactivity. While our understanding of supersulfides in biology has rapidly advanced, there are some chemical features of this unique functional group that require re-evaluation. Persulfides, such as glutathione hydropersulfide, have been called "supersulfide" as it is assumed that the alkyl hydropersulfide (RSSH) functional group is a superior nucleophile compared to the corresponding thiol (RSH) due to the alpha effect. However, recent quantum mechanical calculations and experimental data show that persulfides are not "super" nucleophiles, but rather potent electrophiles in cellular biology. It is proposed here that persulfides, via their electrophilic signalling effects, induces a cellular hormesis effect, which may explain the observed effects of altered RSSH production. Therefore, the electrophilic and thiol oxidant properties of persulfides should considered in cellular biology.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Sulfetos/química , Compostos de Sulfidrila/química , Transdução de Sinais
12.
Water Environ Res ; 95(8): e10916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533124

RESUMO

Granulated coal ash was prepared by mixing coal ash derived from a coal electric power plant and blast furnace cement, to remove hydrogen sulfide from aquatic environment. In this study, we investigate the effects of the composition of the coal ash used to prepare the granulated coal ash on its hydrogen sulfide removal performance. Manganese, magnesium, and calcium contents in the granulated coal ash were found to be the major factors in controlling the rate of hydrogen sulfide removal. The kinetics of hydrogen sulfide removal by the granulated coal ash were expressed as a first-order equation with a rate constant of 0.0081-0.080 h-1 . The rate constant for hydrogen sulfide removal obtained in this study correlated well with the manganese content in the granulated coal ash. The increasing surface pH attributed to the hydrolysis of calcium and magnesium on the surface of the granulated coal ash slightly increased the hydrogen sulfide removal rate. PRACTITIONER POINTS: Adsorbents for H2 S are prepared by coal ash from different coal blend and coal electric power generation processes. Adsorbents tested in this study could remove hydrogen sulfide effectively. Manganese oxide in the adsorbents enhanced the removal rate of hydrogen sulfide. Adsorbents tested in this study contribute to sustainable development goals in terms of coal fly ash recycling.


Assuntos
Cinza de Carvão , Sulfeto de Hidrogênio , Cinza de Carvão/química , Sulfeto de Hidrogênio/química , Água/química , Cálcio , Manganês , Magnésio , Carvão Mineral
13.
Chem Commun (Camb) ; 59(58): 8949-8952, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37337768

RESUMO

Attaining controlled, biocompatible H2S donors poses significant challenges. We developed Bhc-TCN-Ph, a photoactivated H2S donor derived from 6-bromo-7-hydroxycoumarinmethyl thiocarbonate. Upon 365 nm light exposure, COS is released, generating H2S and coumarin fluorescence for visualization. This process produces no electrophilic by-products. In vitro evaluations reveal good cytochemical and cytocompatibility characteristics.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Óxidos de Enxofre/química , Cumarínicos , Corantes Fluorescentes
14.
Curr Opin Chem Biol ; 75: 102325, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37216872

RESUMO

Polysulfides (RSSnSR, n ≥ 1) are a class of sulfane sulfur compounds that have gained significant recent attention due to their connections to hydrogen sulfide (H2S) and hydropersulfides (RSSH), which are known to play important roles in redox signaling. While the potential regulatory functions of polysulfides in biological systems have been recognized for a long time, understanding their interactions with H2S/RSSH have only recently begun. In this Mini Review, some of the most recent discoveries of polysulfides within biological contexts are summarized and these include their biological formation pathways, detection methods for animal and plant samples, properties, and unique functions. These studies have set up a solid foundation for understanding polysulfide biology, and more mechanistic details are expected to be discovered in the coming years.


Assuntos
Sulfeto de Hidrogênio , Sulfetos , Animais , Sulfetos/química , Sulfeto de Hidrogênio/química , Transdução de Sinais , Oxirredução
15.
J Mol Graph Model ; 122: 108463, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37004418

RESUMO

An effort has been made to explore the adsorption potential of activated carbon (AC) structures for adsorption of hydrogen sulfide (H2S) and sulfur dioxide (SO2) employing density functional theory (DFT) at GGA level. 2-ring, 3-ring, 6-ring, and 9-ring carbon structures are used as adsorbent surfaces. The above mentioned rings are examined by creation of defect and inclusion of hydrogen as well to get the clear view close to experimental observations of adsorption properties of activated carbon. The adsorption properties depend upon many factors including whether adsorbate adsorbs in planer or non-planer mode, defect creation in the adsorbent substrate, atomic hydrogen insertion in the system and size of the adsorbent system. Our calculations show that side by side (planer) interaction binds the molecules much more strongly in comparison with molecules adsorbed upon the surface in non-planer mode. If vacancy is created at the central position of the surface, the molecules bind with substantial binding energy. However, overall Eads of the molecules varies randomly and no consistency could be achieved. Additionally, smaller sized structures are favorable relative to the bigger surfaces. The highest Eads for both the molecules is -2.97 eV, though not on the same substrate system. Finally, it can be argued that activated carbon is very useful material for adsorbing the noxious gases.


Assuntos
Carvão Vegetal , Sulfeto de Hidrogênio , Carvão Vegetal/química , Adsorção , Sulfeto de Hidrogênio/química , Dióxido de Enxofre/química , Hidrogênio
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122739, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084684

RESUMO

Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule and is known to be involved in the occurrence and development of inflammation. To better understand its physiological and pathological process of inflammation, reliable tools for H2S detection in living inflammatory models are desired. Although a number of fluorescent sensors have been reported for H2S detection and imaging, water-soluble and biocompatibility nanosensors are more useful for imaging in vivo. Herein, we developed a novel biological imaging nanosensor, XNP1, for inflammation-targeted imaging of H2S. XNP1 was obtained by self-assembly of amphiphilic XNP1, which was constructed by the condensation reaction of the hydrophobic, H2S response and deep red-emitting fluorophore with hydrophilic biopolymer glycol chitosan (GC). Without H2S, XNP1 showed very low background fluorescence, while a significant enhancement in the fluorescence intensity of XNP1 was observed in the presence of H2S, resulting in a high sensitivity toward H2S in aqueous solution with a practical detection limit as low as 32.3 nM, which could be meet the detection of H2S in vivo. XNP1 also has a good linear response concentration range (0-1 µM) toward H2S with high selectivity over other competing species. These characteristics facilitate direct H2S detection of the complex living inflammatory cells and drug-induced inflammatory mice, demonstrating its practical application in biosystems.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Camundongos , Animais , Células HeLa , Corantes Fluorescentes/química , Microscopia de Fluorescência , Imagem Óptica , Sulfeto de Hidrogênio/química , Inflamação/diagnóstico por imagem
17.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108682

RESUMO

Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.


Assuntos
Sulfeto de Hidrogênio , Naftoquinonas , Compostos de Sulfidrila/química , Tiossulfatos , Cisteína/metabolismo , Sulfeto de Hidrogênio/química , Oxirredução , Glutationa/metabolismo , Proteínas/metabolismo , Oxigênio , Naftoquinonas/metabolismo
18.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930753

RESUMO

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Assuntos
Sulfeto de Hidrogênio , Pancreatite , Ratos , Animais , Sulfeto de Hidrogênio/química , Luminescência , Eletroquímica , Doença Aguda , Dióxido de Silício , Microesferas
19.
Microbiol Res ; 271: 127366, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989759

RESUMO

As a critical endogenous signaling molecule, hydrogen sulfide may induce reversible post-translational modifications on cysteine residues of proteins, generating a persulfide bond known as S-sulfhydration. A systemic overview of the biofunctions of S-sulfhydration will equip us better to characterize its regulatory roles in antioxidant defense, inflammatory response, and cell fate, as well as its pathological mechanisms related to cardiovascular, neurological, and multiple organ diseases, etc. Nevertheless, the understanding of S-sulfhydration is mostly built on mammalian cells and animal models. We subsequently summarized the mediation effects of this specific post-transcriptional modification on physiological processes and virulence in bacteria. The high-sensitivity and high-throughput detection technologies are required for studying the signal transduction mechanism of H2S and protein S-sulfhydration modification. Herein, we reviewed the establishment and development of different approaches to assess S-sulfhydration, including the biotin-switch method, modified biotin-switch method, alkylation-based cysteine-labelled assay, and Tag-switch method. Finally, we discussed the limitations of the impacts of S-sulfhydration in pathogens-host interactions and envisaged the challenges to design drugs and antibiotics targeting the S-sulfhydrated proteins in the host or pathogens.


Assuntos
Cisteína , Sulfeto de Hidrogênio , Animais , Cisteína/metabolismo , Eucariotos/metabolismo , Biotina/metabolismo , Proteína S/metabolismo , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Bactérias/genética , Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
20.
Environ Sci Pollut Res Int ; 30(19): 57050-57057, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36930313

RESUMO

In this article, an innovative sorbent (Fe-FA) is prepared from fly ash; ferrous sulfate-containing waste slag (FSS), which are industrial wastes; and NaOH by a hydrothermal method at 100 °C. As a result, in comparison to several conventional sorbents, such as ZnO, Fe2O3, 13X zeolite, and activated carbon, Fe-FA had the best adsorption performance for H2S adsorption. Fe-FA had not only a higher adsorption capacity (near 150 mg/g) but also a longer breakthrough time (near 400 min) when gas hourly space velocity was 8000 h-1. Then, characterizations of XRD, BET, NH3-TPD, FTIR, and XPS analyzed basic properties of Fe-FA and revealed reasons for the excellent adsorption performance. In general, the excellent adsorption performance of Fe-FA for H2S is mainly due to the high content of iron species (almost 50%) and suitable mesoporous structure in the Fe-FA.


Assuntos
Sulfeto de Hidrogênio , Ferro , Cinza de Carvão/química , Sulfeto de Hidrogênio/química , Adsorção , Resíduos Industriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...